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DIFFERENCE DISTRIBUTIONS APPLICABLE TO CERTAIN HEALTH PHYSICS 
MEASUREMENTS  

Alan L. Justus, RP-SVS, 4/1/2019 (an update of LA-UR-16-23487) 

Abstract - This paper discusses calculational methods for the determination of the 
difference distributions associated with certain health physics measurements.  These 
measurements include the check source response counts relative to an initial reference count, the 
Albatross (i.e., HPI model 2080B) neutron tube counts relative to the gamma tube counts, and 
those that involve the use of the automatic background subtraction feature within portable health 
physics instrumentation.  This paper therefore provides a technical basis for the necessary source 
strength of a check source in order to meet daily limits, the gamma field limitations of the 
HPI2080 Albatross, as well as the consequences of automatic background subtraction.  Examples 
are provided that illustrate the methods for a few specific measurements.   

INTRODUCTION 

Certain health physics measurement applications involve the comparison of essentially two 
seemingly identical measurement results.  A common example of this particular measurement 
application is the comparison of a morning’s scaler count of a reference source to an essentially 
identical count performed sometime previously that established the so-called reference reading.  
The reference reading could have been established by an initial count characterized by the same 
counting time used in the subsequent daily checks, or it could have involved a count time that is, 
for instance, ten times that used for each morning’s daily check.  An additional example 
involving the comparison of essentially two identical gamma background measurements, takes 
place within the so-called Albatross pulsed neutron remmeter (i.e., Health Physics Instruments, 
Inc. (HPI) model 2080B), involving the ‘running’ comparison of the Ag-wrapped neutron 
Geiger-Mueller (GM) tube counts relative to the Sn-wrapped gamma-compensation GM tube 
counts.  In the examples above, each of the two measurement results is randomly distributed 
about the same Poisson mean count value.  The quantity of interest is the difference of the two 
results, which will be randomly distributed about the value of zero counts.   

A slightly different health physics measurement application involves the comparison of 
two different measurement results.  The example of this particular measurement application is 
the utilization of the automatic background subtraction feature within portable health physics 
instrumentation.  Each of the two measurement results (i.e., the initial background count and the 
subsequent sample count) is randomly distributed about its own (and different) Poisson mean 
count value.  The quantity of interest is the difference of the two results, which will be randomly 
distributed about the expected difference value, i.e., mean difference of counts.   

This paper discusses the calculational methods for the determination of both of these so-
called difference distributions, i.e., both for the former case involving the same mean count and 
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the latter involving different mean counts.  Examples are provided which highlight the various 
concepts.   

NORMAL APPROXIMATIONS FOR THE SAME MEAN COUNT CASE 

Regarding the first case in the Introduction above (i.e., those applications involving the 
comparison of two measurements of the same mean count), if that same mean count value is 
expected to be hundreds of counts or greater, then the actual applicable Poisson distribution can 
be adequately approximated by a normal distribution.  The difference distribution, randomly 
distributed about the expected difference value of zero counts, is then the difference of two 
normal distributions.  This appears calculationally much simpler than dealing with the difference 
of the two Poisson distributions, and can readily be represented with analytical formulae known 
as the normal difference distribution (Appendix A).   

Several Excel-based trial calculations were performed for eqn (A-2a), which represents 
the random expected difference in two measurements with the same mean count.  Because 
Poisson statistics apply, the variance is set equal to the (Poisson) mean count.  The calculations 
investigated mean counts ranging from 100 counts to 100,000 counts.  As a first approximation, 
it was discovered that a mean count in the neighborhood of 2000 counts was necessary to 
reliably keep the difference within about 200 counts (i.e., 10%), and a mean in the 
neighborhood of 500 counts to reliably stay within about 100 counts (i.e., 20%).  The 
calculations were then extended to include eqns (A-2b and c), which represented two 
measurements with the same mean count but with reference count times ten times and five times 
longer than the daily count time, respectively.  As expected, the previously observed 
probabilities of exceeding 10% or 20% were significantly reduced.  These lower probabilities 
are preferred, and indicate that when possible one should always choose a longer count time for 
the initial reference reading.   

The two difference distributions, i.e., for the same count time and for the reference count 
time ten times longer, are plotted in Fig. 1 for the 2000 mean count example.  Additionally 
plotted in Fig. 1 is the standard normal distribution, i.e., eqn (A-3), for a mean and variance of 
2000 counts, but with the plotted distribution simply shifted downward 2000 counts (i.e., from 
being symmetrically distributed about 2000 counts to instead about zero counts).  The difference 
distribution for the same count time is wider than the standard normal distribution (i.e., that 
labeled with ‘single count’ within Fig. 1) by the factor 2.  The improvement with the longer 
reference count time is quite obvious (i.e., that labeled with ‘ref. ´ 10’ within Fig. 1).  In fact, 

that distribution’s spread is quite similar to that expected in each daily gross count (i.e., the 
‘single count’ curve).  In other words, the variance in the daily difference would be dominated by 
the variance in that daily gross count rather than the variance in the initial determination of the 
reference value.  The reader will recognize the similarity to the reason behind determining 
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background count rates using background count times that are ten times longer than the sample 
count times.   

 

Figure 1.  Widths of the normal difference distributions versus a standard normal 
distribution for a mean of 2000 counts (see text).   

Mention was made above regarding ‘to reliably keep the difference within’ or ‘to reliably 
stay within’ such and such an amount.  In the health physics measurements field, the magnitude 
of the amount can readily be surmised to be 10% or 20%, but the magnitude of reliability 
requires further discussion.  If the comparison is only performed weekly, then only about 50 
comparisons are performed annually.  If it is acceptable to deal with (i.e., recount) one ‘nuisance’ 
result per year, then the two-tailed nuisance probability is 2% and the magnitude of reliability is 
98%.  However, if the comparison is performed daily, then about 250 comparisons are performed 
annually.  If it is again acceptable to have one ‘nuisance’ result per year, then the two-tailed 
nuisance probability is 0.4% and the magnitude of reliability is 99.6%.  If the nuisance levels 
want to be made essentially negligible, then the nuisance rate can be further reduced by an order 
of magnitude to only once in 10-years.  These possibilities are summarized in Table 1.  For 
various reasons that will be explained later, the level of reliability preferred throughout the rest 
of this Section will be based on the negligible nuisance rate involving daily counts, i.e., 0.04%.   
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Table 1.  Potentially-acceptable nuisance ‘alarm’ rates.   

Tests per year Acceptable nuisance 
‘alarm’ rate 

Two-tailed test 
nuisance 
probability 

Equivalent one-
tailed test 
probability 

50 (i.e., one per week) 1 per year 0.02 0.01 
 
 

0.1 per year 0.002 0.001 

250 (i.e., one per day) 1 per year 0.004 0.002 
 0.1 per year 0.0004 (i.e., 0.04%) 0.0002 

 

The exact minimum count necessary in a daily count of a reference source can now 
readily be determined in order to reliably meet established limits of 10% or 20%.  What will 
be presented here is based upon the requirement to yield a nuisance alarm rate of only 0.04% 
during a presumed daily counting interval.  As described within Appendix A, the built-in Excel 
function NORM.INV was used in conjunction with eqns (A-2 and 4) with a one-sided 
cumulative probability of 0.9998.  The results are presented in Table 2a.  Note that any 
background counts are presumed to have negligible impact, either because background is 
essentially absent or absolutely stable.  The numeric values are therefore in practice applicable 
only to alpha, neutron, and shielded and guarded beta measuring instrumentation with negligible 
background count rates.   

Table 2a.  Minimum gross counts necessary to meet established limits of 10% and 20% for a 
nuisance alarm rate of 0.04% (i.e., 1 in 2500).  Note that background counts are presumed 
negligible.   

 Paired-blank 
(x1) case  

Reference x5 
case 

Reference x10 
case 

10% 2505 1505 1378 
20% 627 376 345 

 

Example 1.  An alpha reference source needs to be selected for daily counts on the Ludlum 
model 43-10 alpha channel.  The daily count time used will be 2-minutes.  The reference 
reading, established initially for the entire year’s issuance of the instrument, will use a count time 
of 10-minutes.  Established limits of 10% are to be met.  Referring to Table 2a, it can be seen 
that a minimum count rate of about 753 cpm (i.e., 1505 counts/2-minutes) is necessary.  With a 
presumed counting efficiency of 0.39 cps Bq-1, a minimum alpha activity of about 1930 dpm (33 
Bq) is necessary.  The probability of a (nuisance) statistical outlier is then negligible.  If the 
result is beyond 10%, it probably isn’t statistics and, following a recount, an actual problem 
might need to be diagnosed.   
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When the background count rate is not negligible, the background count contribution to 
an increased variance must be addressed (Appendix A).  Eqn (A-5) was used to account for the 
increased standard deviation for a background count of 60 counts (typifying pancake GMs and 
energy-compensated GMs), a background count of 600 counts (typifying the beta channels of P-
10 gas proportional counter (PC) and dual-scintillator detectors), and a background count of 
6000 counts (typifying NaI(Tl)-based gamma scintillation detectors).  The resulting minimum 
net counts are presented in Tables 2b-d, respectively.  For intermediate values of background 
count, the results are additionally presented in Figures 2a-b.  Note that the background count is 
the product of the background count rate and the sampling time.   

 

Table 2b.  Minimum net counts necessary to meet established limits of 10% and 20% for a 
nuisance alarm rate of 0.04% (i.e., 1 in 2500) and with a background count of 60 counts.   

 Paired-blank 
(x1) case  

Reference x5 
case 

Reference x10 
case 

10% 2620 1615 1490 
20% 730 472 439 

 

Table 2c.  Minimum net counts necessary to meet established limits of 10% and 20% for a 
nuisance alarm rate of 0.04% (i.e., 1 in 2500) and with a background count of 600 counts.   

 Paired-blank 
(x1) case  

Reference x5 
case 

Reference x10 
case 

10% 3395 2290 2150 
20% 1235 886 838 

 

Table 2d.  Minimum net counts necessary to meet established limits of 10% and 20% for a 
nuisance alarm rate of 0.04% (i.e., 1 in 2500) and with a background count of 6000 counts.   

 Paired-blank 
(x1) case  

Reference x5 
case 

Reference x10 
case 

10% 6880 5065 4815 
20% 3073 2320 2213 
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Figure 2a.  Minimum net counts necessary to meet established limits of 10% for a nuisance 
alarm rate of 0.04% (i.e., 1 in 2500) for background counts up to 7000 counts.   

 

Figure 2b.  Minimum net counts necessary to meet established limits of 20% for a nuisance 
alarm rate of 0.04% (i.e., 1 in 2500) for background counts up to 7000 counts.   
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AC-powered laboratory-grade alpha/beta counting systems should generally be able to 
meet a ±10% criterion.  Using Tables 2a and c, the minimum reference source activity necessary 
for several representative manufacturer’s models and typical scaler count times is presented in 
Table 3.  The alpha efficiencies used for the Eberline model SAC-4, Ludlum model 43-10-1, 
automatic planchet counter models, and the Berthold models were 0.36, 0.39, 0.38, and 0.34 cps 
Bq-1, respectively.  The beta efficiencies used for the Ludlum model 43-10-1, automatic planchet 
counter models, and the Berthold models were 0.41, 0.45, and 0.50 cps Bq-1, respectively.  All 
backgrounds were negligible with the exception of the beta channel of the Ludlum 43-10-1.   

Table 3.  Minimum laboratory instrument check source strengths necessary to reliably meet 
established limits of 10%.  The reference count is presumed to be 5 times longer than the daily 
count time.  (The level of reliability is 1 nuisance ‘alarm’ every 2500 measurements.)   

Model Count Time 
(min) 

dpm (Bq) 
alpha 

dpm (Bq) 
beta 

Eberline SAC-4 
(manual planchet counter, 
ZnS scintillator based) 
 

1 4180(70) NA 

Ludlum M43-10-1 
(manual planchet counter, 
dual scintillator based) 
 

2 1930(32) 2800(47) 

Mirion/Protean 
(automatic planchet 
counter, P-10 gas PC) 
 

2 1980(33) 1670(28) 

Berthold 770/790 
(wide-area, P-10 gas PC) 

5 885(15) 600(10) 

 

Portable health physics instruments should generally be able to meet a ±20% criterion.  
The minimum reference source activity, or source strength, necessary is presented in Table 4 for 
some common detectors in use at LANL for various ratemeter response times as well as for a 
scaler count time of 60-seconds.  The response time is considered here to be 2.2τ, where τ is the 
characteristic time constant of the ratemeter response, and 2τ is the effective sampling time 
(Evans 1955).  The background count rates used for the Eberline model HP380AB-alpha, 
HP380AB-beta, various pancake GMs, Eberline model HP-270 energy-compensated GM, 
Eberline model NRD-1 neutron remmeter, and Ludlum 44-10 2´2 NaI were 8, 450, 70, 20, 0, 

and 7000 cpm, respectively.  From the effective sampling time and the given background count 
rate, the background count is determined, and Figs. 2a-b then used to determine the minimum net 
count.  The efficiencies used for the Eberline model HP380AB-alpha, HP380AB-beta, various 
pancake GMs, Eberline model HP-270 energy-compensated GM, and Eberline model NRD-1 
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neutron remmeter were 0.2 cps Bq-1, 0.3 cps Bq-1, 0.34 cps Bq-1, 20 cps per mR/h, and 2.33 cps 
per mrem/h, respectively.   

Table 4.  Minimum portable instrument check source readings necessary to reliably meet 
established limits of 20%.  The paired-blank case is assumed.  (The level of reliability is 1 
nuisance ‘alarm’ every 2500 measurements.)   

 
Mode 

Response 
Time (s) 

HP380AB- 
alpha 
dpm(Bq) 

HP380AB- 
beta 
dpm(Bq) 

Pancake- 
beta 
dpm(Bq) 

HP-
270-
mR/h 

NRD-
mrem/h 

44-10 
cpm 
gamma 

Ratemeter-
Fast 

 
3 

 
69k(1150) 

 
48k(810) 

 
41k(680) 

 
12 

 
99 

 
22000 

Medium 10 21k(345) 16k(270) 13k(210) 3.4 30 9900 
Standard 22 9.4k(157) 8.2k(136) 5.9k(98) 1.6 14 6100 
Slow 30 6.9k(115) 6.5k(110) 4.4k(74) 1.1 10 5100 
        
Scaler- 60 3.1k(52) 3.7k(62) 2.2k(36) 0.6 4.5 3300 

 

Example 2.  A neutron reference field reading needs to be selected for daily readings with the 
Eberline model NRD-1 coupled to the Thermo model RadEye PX ratemeter.  The effective (i.e., 
2) count time used will be 20 seconds (i.e., the ‘standard’ response time).  Established limits of 
20% are to be met.  Referring to Table 4, it can be seen that a minimum reading of about 14 
mrem/h is necessary.  The probability of a statistical outlier is quite small.  If the result is beyond 
20%, it probably isn’t statistics, and an actual problem might need to be diagnosed.  Although 
source strengths should minimally yield 14 mrem/h, larger values are acceptable and encouraged.  
It should be realized that with larger values, the expected variations in response test readings will 
be tighter, and actual drifts due to a problem might go undetected for some time.   

Example 3.  For hand and shoe monitors (HFMs) and personnel contamination monitors 
(PCMs), the count time at LANL is 16 s, and typical alpha and beta efficiencies are 0.15 and 0.2 
cps Bq-1, respectively.  With typical background count rates of 0.2 and 20 cps in the alpha and 
beta channels, respectively, the background counts are 3.2 and 320 counts, respectively.  From 
Table 2a and Fig. 2b, the required alpha and beta check source count rates are therefore 39.2 cps 
(i.e., 627/16) and 62.5 cps (i.e., 1000/16), respectively, requiring minimum alpha and beta 
activities of 15,680 dpm (261Bq) and 18,750 dpm (313 Bq), respectively, to reliably stay within 
±20%.   

EXACT POISSON TREATMENT FOR THE SAME MEAN COUNT CASE 

It has so far been assumed that, as long as the mean count was hundreds of counts or 
more, that the applicable Poisson distribution can be adequately approximated by a normal 
distribution.  The difference distribution, randomly distributed about the value of zero counts, 
was then the difference of two normal distributions.  However, when the mean count is 
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significantly lower, the actual difference of two Poisson distributions must instead be 
determined.  The calculational methods are detailed within Appendix B.   

Several Excel-based trial calculations were performed using eqn (B-1), which represented 
the expected random difference in two measurements with the same Poisson mean count.  The 
calculations investigated Poisson mean counts initially ranging from 0.5 mean counts to 8 mean 
counts per counting interval.  The Poisson difference distribution for the Poisson mean count 
equal to 1 is plotted in Fig. 3.  Note that only one side of the symmetric distribution is shown.  
Additionally plotted in Fig. 3 is the normal difference distribution approximation, i.e., eqn (A-2a) 
for a mean and variance equal to 1 count.  Differences between the two probability distributions 
are apparent at probabilities that are about one order of magnitude beneath the most probable 
(i.e., that at zero).  As the Poisson mean count increased, the departure of the normal difference 
distribution approximation from the exact Poisson treatment decreased.  The Poisson difference 
distribution for an 8 count mean is plotted in Fig. 4, along with the normal difference distribution 
approximation, i.e., eqn (A-2a) for a mean and variance equal to 8 counts.  At 8 counts, the 
difference between the two distributions is negligible out to probabilities that are about two 
orders of magnitude beneath the most probable (i.e., that at zero).   

 

Figure 3.  One side of the difference distribution for Poisson means of 1 count.   
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Figure 4. One side of the difference distribution for Poisson means of 8 counts.   

 

Within the so-called Albatross pulsed neutron remmeter (i.e., specifically the HPI model 
2080B pulse neutron survey meter), a comparison is made of the neutron-plus-gamma-sensitive 
Ag-wrapped GM tube counts relative to the gamma-only-sensitive Sn-wrapped gamma-
compensation GM tube counts.  The counting interval is adjustable in 16-second increments 
from 16-s (AV=1) up to 512-s (AV=32).  The GM tubes have an identical gamma sensitivity of 6 
cps per mR/h.  Any net positive neutron tube count difference is converted to a displayed neutron 
dose reading through the neutron calibration factor of 0.2 cps per mrem/h.  (Note: at the present 
time, the display actually only reads in mrem/h.)   

For a counting interval equal to just one averaging time (AV=1), one can be interested as 
to what the neutron readings could potentially reach up to in gamma fields ranging from about 5 
to 80 R/h.  As can be seen in Table 5a, Poisson mean counts ranging from about 0.5 counts up 
to about 8 counts per 16-s interval are considered.  Eqn (B-4) was utilized within Excel to 
calculate each difference distribution.  Column 4 lists the practical maximum count difference 
that can be reached, obtained from the cumulative distribution function (cdf) of each calculated 
probability distribution.  The resulting neutron tube net count rate, temporarily reached  1% of 
the time, is listed in column 5.  Through the neutron dose rate calibration factor of 0.2 cps per 
mrem/h, the resulting temporarily displayed reading is given in the last column.  Note that, due 
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to ambient gamma fields, temporary neutron readings are possible that are potentially about two 
orders of magnitude greater than the gamma fields.   

The effective way to reduce this influence is to increase the counting interval from 16-s 
(AV=1) up to 128-s (AV=8) or more, since the relative error in the Poisson difference 
distribution is observed to still exhibit the 1/(count) dependence typical of the individual 
Poisson distributions themselves.  This is demonstrated in Table 5b.   

Table 5a.  Effect of gamma fields on the 2080B neutron reading for AV=1 (i.e., 16-s).   

Ambient 
gamma 
(R/h) 

Mean 
count 
rate 
(cps) 

Poisson 
mean 
(counts/16-s) 

Max. reach 
(1%) 
(counts/16-s) 

Max. 
reach 
(cps) 

Temp. 
reading 
(mrem/h) 

5 0.03 0.48 2 0.13 0.63 
10 0.06 0.96 3 0.19 0.94 
20 0.12 1.92 5 0.31 1.6 
40 0.24 3.84 7 0.44 2.2 
80 0.48 7.68 9 0.56 2.8 

 

Table 5b.  Effect of gamma fields on the 2080B neutron reading for AV=8 (i.e., 128-s).   

Ambient 
gamma 
(R/h) 

Mean 
count 
rate 
(cps) 

Poisson mean 
(counts/128-s) 

Max. reach 
(1%) 
(counts/128-s) 

Max. 
reach 
(cps) 

Temp. 
reading 
(mrem/h) 

5 0.03 3.84 7 0.05 0.27 
10 0.06 7.68 9 0.07 0.35 
20 0.12 15.4 13 0.10 0.51 
40 0.24 30.7 19 0.15 0.74 
80 0.48 61.4 27 0.21 1.05 

 

Note that if actual neutron fields are also present, then these gamma-induced fluctuations 
will simply be superimposed upon the actual neutron readings (rather than the previously 
presumed 0 mrem/h neutron field).  So far, the ambient gamma fields were assumed of course to 
be steady-state gamma fields.  In pulsed fields, the influence of narrow accelerator pulses of 
photon radiation are effectively cancelled due to the occurrence of a simultaneous count in both 
the neutron and gamma GM tubes.  The additional dead-time thus introduced is normally quite 
trivial to the live time of the neutron measurement.   

NORMAL APPROXIMATIONS FOR DIFFERENT MEAN COUNTS 

Regarding the latter case in the Introduction, i.e., those applications involving the 
comparison of two different mean counts, if those mean count values are expected to be 
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hundreds of counts or greater, then once again each applicable Poisson distribution can be 
adequately approximated by a normal distribution.  This is typically the case, for instance, for the 
beta counting channels of COTS (commercially-available off the shelf) portable health physics 
instrumentation.  The difference distribution, randomly distributed about the mean difference of 
counts, is then the difference of two normal distributions.  As seen previously, this is 
calculationally quite simple, readily represented by the normal difference distribution (detailed 
within Appendix A).   

Several Excel-based calculations were performed for eqn (A-6), which represents two 
measurements (i.e., a background count and a gross sample count) with the same count time.  
Because Poisson statistics apply, each variance was set equal to its Poisson mean count.  Since a 
portable health physics instrument’s beta counting channel typically exhibits background count 
rates of 300 to 500 cpm, the background mean count for a 60-s scaler would range from 300 to 
500 counts.  The beta activities of interest will be assumed to be 0 dpm (0 Bq), 200 dpm (3.33 
Bq), and 1000 dpm (16.66 Bq).  (The last two values taken directly from the DOE unrestricted 
release tables.)  Since the beta counting channel of the portable instrument typically exhibits 
efficiencies of approximately 0.3 cps Bq-1, net mean count rates of interest are therefore 0 cpm 
(i.e., representing no net activity in the sample), 60 cpm (i.e., representing 3.33 Bq × 0.3 cps Bq-

1), and 300 cpm (i.e., representing 16.66 Bq × 0.3 cps Bq-1).  Net mean counts of interest for a 
60-s scaler are therefore 0, 60, and 300 counts.  Gross mean counts are simply the sum of the 
appropriate background count and net count.   

The difference distribution for the background of 300 counts and a net of 0 counts is 
plotted in Fig. 5a (left side).  This represents the possible measurement values with background 
subtraction activated within the instrument.  Although this difference distribution is actually 
symmetric about the value of 0 counts, COTS health physics instrumentation (such as the 
Thermo E-600 and RadEye) do not display negative numbers.  Hence, a mean value of 0 counts 
is quite difficult to confirm.  The difference distribution of Fig. 5a effectively should show a zero 
probability for each count < 0 and a value of 0.5163 at 0 counts (i.e., 0.5 + 0.0163).  Additionally 
plotted in Fig. 5a (right side) is the standard normal distribution, i.e., eqn (A-3), for a mean and 
variance of 300 counts.  This represents the possible measurement values without background 
subtraction activated (i.e., simple gross mode).  Here, the mean value of 300 counts is quite easy 
to observe, even in ratemeter mode.  Fig. 5b replots the distributions, but with the gross count 
distribution simply shifted downward by 300 counts, i.e., from being symmetrically distributed 
about 300 counts to instead about 0 counts (in order to compare relative shapes).  Note that Fig. 
5b is just a one-sided form of Fig. 1.  As also seen in in the first section, the difference 
distribution for the net count is found to be wider than the standard normal distribution (i.e., that 
labeled ‘gross bkgd of 300’ within Fig. 5) by the factor of 2 = 1.41, exactly that expected from 
classical statistics for the critical level (Currie 1968).  In other words, the variance in the net 
count is doubled since it is the sum of the background variance and the gross count variance 
(which is the same as that for background for a net of 0 counts).   
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Figure 5a.  Left side: the difference distribution for the background of 300 counts and a 
net of 0 counts (i.e., background subtraction mode).  Right side: the expected possibilities in 

simple gross mode (with 300 counts).   

 

Figure 5b.  A comparison of the relative widths of the two distributions plotted in Fig. 5a.   
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Next, the difference distribution for the background of 300 counts and a net of now 60 
counts is plotted in Fig. 6a (left side).  This represents the possible measurement values with 
background subtraction activated within the instrument.  In this case, this difference distribution 
is symmetric about the value of 60 counts, which is now easier to confirm with health physics 
instrumentation.  Additionally plotted in Fig. 6a (right side) is the standard normal distribution, 
i.e., eqn (A-3), for a mean and variance of 360 counts.  This represents the possible measurement 
values without background subtraction activated (i.e., simple gross mode).  Here, the mean value 
of 360 counts is also very easy to observe, even in ratemeter mode.  Fig. 6b replots the 
distributions, but with the gross count distribution simply shifted downward by 300 counts (i.e., 
from being symmetrically distributed about 360 counts to instead about 60 counts).  The 
difference distribution for the net count is found to be just slightly wider than the standard 
normal distribution (i.e., that labeled ‘gross bkgd of 300’ within Fig. 6) by the factor of 
(660/360) = 1.83 = 1.35, exactly that expected from classical statistics for the critical level 
(Currie 1968).  The variance in the net count is the sum of the background variance (i.e., 300) 
and the gross count variance (i.e., 360).   

 

Figure 6a.  Left side: the difference distribution for the background of 300 counts and a 
net of 60 counts (i.e., background subtraction mode).  Right side: the expected possibilities in 

simple gross mode (with 360 counts).   
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Figure 6b.  A comparison of the relative widths of the two distributions plotted in Fig. 6a.   

Since no new discoveries would be conveyed by presenting the very similar results 
involving either the background count of 500 counts or the net count value of 300 counts, such 
presentations will be forgone.  It should simply be noted that (for most COTS health physics 
portable instruments utilizing automatic background subtraction), net count values near 0 counts 
will have the negative values of the difference distribution truncated to 0 counts, whereas 
significant net count values would be displayed correctly, but with a slightly larger associated 
variance than the gross count itself.  In addition, in many of these COTS instruments, the stored 
background value can either be difficult to access or in a unit of measurement that is different 
than that on the instrument’s display, e.g., ‘cps’ with a ‘dpm’ display.   

EXACT POISSON TREATMENT FOR DIFFERENT MEAN COUNTS 

It was assumed in the previous section that as long as the mean count was a relatively 
large count value, that the applicable Poisson distribution can be adequately approximated by a 
normal distribution.  However, at the very low count rates associated with the alpha counting 
channels of portable health physics instrumentation, this approximation is not valid.  Therefore, 
additional Excel-based calculations were performed, which represented the expected difference 
in two measurements (i.e., a background count and a gross sample count) with different Poisson 
mean counts (see Appendix C for the calculational details).   

Several Excel-based calculations were performed for eqn (C-4), which represents two 
measurements (i.e., a background count and a gross sample count) with the same count time.  
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Since a portable health physics instrument’s alpha counting channel typically exhibits 
background count rates of 1 to 7 cpm, the values considered for the background mean count for a 
60-s scaler are 1, 4, and 7 counts.  The alpha activities of interest will be assumed to be 0 dpm (0 
Bq), 20 dpm (0.33 Bq), and 50 dpm (0.833 Bq).  (The last two values are related to the DOE 
unrestricted release tables.)  Since the alpha counting channel of the portable instrument typically 
exhibits efficiencies of approximately 0.2 cps Bq-1, net mean count rates of interest are therefore 
0 cpm (i.e., representing no net activity in the sample), 4 cpm (i.e., representing 0.33 Bq × 0.2 
cps Bq-1), and 10 cpm (i.e., representing 0.833 Bq × 0.2 cps Bq-1).  Net mean counts of interest 
for a 60-s scaler are therefore 0, 4, and 10 counts.  Gross mean counts are simply the sum of the 
appropriate background count and net count.   

The Poisson difference distributions for a net of 0 counts and for all 3 chosen background 
count values are plotted in Fig. 7a (left side).  These represent the possible measurement values 
with background subtraction activated within the instrument.  Although the difference 
distributions are actually symmetric about the value of 0 counts, COTS health physics 
instrumentation (such as the Thermo E-600 and RadEye) do not typically display negative 
numbers.  Hence, the mean value of 0 counts is very difficult to confirm.  Additionally plotted in 
Fig. 7a (toward the right side) are the standard Poisson distributions for means equal to the gross 
(i.e., background) count values.  These represent the possible measurement values without 
background subtraction activated (i.e., simple gross mode).  Fig. 7b replots the distributions, but 
with the gross count distributions simply shifted downward by the gross count values (in order to 
compare relative shapes).  Note that Fig. 7a (left side) is essentially a two-sided form of Figs. 3 
and 4.  As also seen in in the second section, the Poisson difference distributions for the net 
count are found to be wider than the standard Poisson distribution (i.e., those labeled ‘gross bkgd 
of …’ within Fig. 7) by the factor of 2, which is exactly that expected from classical statistics 
for the critical level (Currie 1968).  In other words, the variance in the net count is doubled since 
it is the sum of the background variance and the gross count variance (which is the same as the 
background for a net of 0 counts).   
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Figure 7a.  Left side: difference distributions for a net of 0 counts and each selected 
background count (i.e., background subtraction mode).  Right side: the expected possibilities in 

simple gross mode (with a net of 0 counts).   

 

Figure 7b.  A comparison of the relative widths of the distributions plotted in Fig. 7a.   
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Next, the Poisson difference distributions for a net of 4 counts and for all 3 chosen 
background count values are plotted in Fig. 8a (left side).  These represent the possible 
measurement values with background subtraction activated within the instrument.  Although the 
difference distributions are now fairly symmetric about the value of 4 counts, COTS health 
physics instrumentation still do not display the negative members of the distributions.  Hence, 
the mean value of 4 counts is still somewhat difficult to confirm.  Additionally plotted in Fig. 8a 
(right side) are the standard Poisson distributions for means equal to the gross count values (i.e., 
background + 4 counts).  These represent the possible measurement values without background 
subtraction activated (i.e., simple gross mode).  Fig. 8b replots the distributions, but with the 
gross count distributions simply shifted downward by each background count value.  The 
Poisson difference distributions for the net count are once again found to be wider than the 
standard Poisson distributions (i.e., those labeled ‘gross bkgd of …’ within Fig. 8).  The variance 
in the net count is the sum of the background variance (i.e., 1, 4, or 7) and the gross count 
variance (i.e., 1+4, 4+4, or 7+4, respectively).   

 

Figure 8a.  Left side: difference distributions for a net of 4 counts and each selected 
background count (i.e., background subtraction mode).  Right side: the expected possibilities in 

simple gross mode (with a net of 4 counts).   
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Figure 8b.  A comparison of the relative widths of the distributions plotted in Fig. 8a.   

 

Finally, the Poisson difference distributions for a net of 10 counts and for all 3 chosen 
background count values are plotted in Fig. 9a (left side).  These represents the possible 
measurement values with background subtraction activated within the instrument.  Although the 
difference distributions are now fairly symmetric about the value of 10 counts, health physics 
instrumentation still do not display the few negative members of the distributions.  Yet, the mean 
value of 10 counts is now much easier to confirm than the previous smaller values.  Additionally 
plotted in Fig. 9a (right side) are the standard Poisson distributions for means equal to the gross 
count values (i.e., background + 10 counts).  These represent the possible measurement values 
without background subtraction activated (i.e., simple gross mode).  Fig. 9b replots the 
distributions, but with the gross count distributions simply shifted downward by each 
background count value.  The Poisson difference distributions for the net count are once again 
found to be wider than the standard Poisson distributions (i.e., those labeled ‘gross bkgd of …’ 
within Fig. 9).  The variance in the net count is the sum of the background variance (i.e., 1, 4, or 
7) and the gross count variance (i.e., 1+10, 4+10, or 7+10, respectively).   
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Figure 9a.  Left side: difference distributions for a net of 10 counts and each selected 
background count (i.e., background subtraction mode).  Right side: the expected possibilities in 

simple gross mode (with a net of 10 counts).   

 

Figure 9b.  A comparison of the relative widths of the distributions plotted in Fig. 9a.   
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As in the previous section (i.e., for the beta counting channels), it should again be noted 
that for most COTS health physics portable instruments utilizing automatic background 
subtraction, net alpha count values near 0 counts will always have the negative values of the 
difference distribution truncated to 0 counts, whereas significant net count values would be 
displayed correctly, but with a slightly larger associated variance than the gross count itself.  In 
addition, in many of these COTS instruments, the stored alpha background value can either be 
difficult to access or in a unit of measurement that is different than that on the instrument’s 
display, e.g., cps with a dpm display.   

DISCUSSION 

Difference distributions (the distribution formed from the random difference between two 
random distributions) have been presented for both the case of the two distributions following 
the same Poisson distribution and for the case of the two distributions following two different 
Poisson distributions.  In both cases, the Poisson mean was ‘perfectly-known’, meaning that the 
actual mean is presumed known.  (This case is actually a hypothetical one, since in reality a true 
Poisson mean is seldom, if ever, really known.)  The calculational details were presented in the 
attached appendices.  When the number of counts involved were sufficiently large, normal 
approximations were used (Appendix A); when not, the actual Poisson distributions were used 
(Appendices B and C).  Selected illustrations of practical use were presented within the main 
text, both for the former case involving the same mean count and the latter case involving 
different mean counts.   

These illustrations included (section 1) an analysis of expected check source response 
counts relative to an initial reference count, (section 2) an analysis of the Albatross (i.e., HPI 
model 2080B pulse neutron survey meter) neutron tube counts relative to the gamma tube counts 
within gamma fields, and (sections 3 and 4) an analysis of the use of the automatic background 
subtraction feature within COTS portable health physics instrumentation for both the beta and 
alpha channels, respectively.   

In the first section involving normal approximations for the same mean count, the initial 
reference readings could have been established by an initial count characterized by the same 
counting time as used in the subsequent daily checks, or could have involved a count time that is 
ten times that used for each morning’s daily check.  When the calculations were extended to 
include reference count times ten times longer than the daily count time, the previously observed 
probabilities of exceeding the 10% or 20% criteria were significantly reduced.  In other 
words, the variance in the daily difference was then dominated by the variance in that daily gross 
count rather than the variance in the initial determination of the reference value.  These reduced 
probabilities in the tails were preferred, and indicated that when possible one should always 
choose a longer count time for the initial reference reading.  The reader will have recognized the 
similarity to the reason behind determining background count rates using background count 
times that are ten times longer than the sample count times employed.   
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Additionally in the first section, the lowest nuisance rate of 0.04% was chosen such that 
99.96% of a specific normal difference distribution stays within ±10%.  However, 98% of that 
distribution (corresponding to the 1-in-50 nuisance rate) stays within ±6.57%.  Therefore, an 
added benefit of having chosen the 0.04% rate is that bias (i.e., drifts) of up to a few percent can 
be somewhat tolerated.  For the ±20% case, the associated 1-in-50 value is ±13.14%, which is 
of course the same relative width, but which doubles the level of bias that could be tolerated (i.e., 
up to about 7%).  This was an important reason why the level of reliability preferred throughout 
the paper was based on the negligible nuisance rate involving daily counts, i.e., 0.04%.  The 
probability of a statistical outlier would therefore be expected to be quite small.  If the result is 
outside the acceptable criterion, it probably isn’t statistics, and an actual problem might need to 
be diagnosed.   

None the less, it should also be noted that the minimum counts presented should not be 
seen as absolutes.  Lower count values are acceptable, but the ‘tail’ probabilities will steadily 
increase with decreasing count values.  If the vast portion of the distribution remains within the 
tolerance bands, however, then the consequence will be that now and then a couple of recounts 
will be necessary to confirm or deny a problem (presuming the use of a ‘2 out of 3’ rule).  
Additionally, larger count values are also acceptable and recommended.  It should be realized, 
however, that with significantly larger counts, the expected variations in response test readings 
will be significantly ‘tighter’ (i.e., with a relatively small statistical variance), and long-term 
drifts due to some real problem might actually go undetected for some time if closer attention 
(than simply ±10 or 20%) is not given to the measurement data.   

In the second section involving the actual Poisson distributions for the same mean count, 
it was seen that the Poisson difference distribution quickly converges to that from the normal 
approximation at Poisson means of approximately 10 counts.  Of course, the Poisson mean was 
perfectly (or absolutely) known.  As previously stated, this case is a hypothetical one, since in 
reality a true Poisson mean is seldom, if ever, really known.  The Poisson difference distribution 
was also seen to be perfectly symmetric about zero as expected (seen in Fig. 7a, left side).  The 
Poisson difference distributions were also found to be broader than the ‘parent’ Poisson 
distribution by the factor of 2, i.e., exactly that expected from classical statistics (Currie 1968).  
Equivalently, the variance in the net count (of zero) is doubled with respect to the parent since it 
is the sum of the background variance and the gross count variance (which is the same as the 
background variance for a net of 0 counts).  Since the relative error in the Poisson difference 
distribution was still related to that of the parent Poisson distribution (i.e., 1/√µ), it was seen 
therefore in the analysis of the HPI2080B Albatross pulsed neutron remmeter that an effective 
way of reducing the gamma influence was to increase the counting interval from 16-s (AV=1) up 
to 128-s (AV=8) or more, hence yielding a significantly larger mean count per interval.   

In the third and fourth sections, an analysis was performed of the use of the automatic 
background subtraction feature within COTS portable health physics instrumentation for both a 
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beta and an alpha channel, respectively.  Each of the two measured values (i.e., the initial 
background count and the subsequent sample count) is randomly distributed about its own (and 
presumably different) Poisson mean count value.  The quantity of interest is the difference of the 
two, which will be randomly distributed about the expected difference value, i.e., the mean 
difference of counts.  Therefore, this application involved the expected random difference 
between two random distributions following two different Poisson distributions.  This represents 
the possible measurement values with background subtraction activated within the instrument.   

For either β or α counting channel of health physics instrumentation, i.e., as represented 
by the normal (Gaussian) based calculations or by the exact Poisson based calculations, 
respectively, the difference distributions were normalized and typically fairly symmetric about 
the mean difference value.  Note that the difference distribution for the mean difference of 0 was 
perfectly symmetric.   

It was seen that when the net count values consisted of relatively few counts, a significant 
portion of the associated background-subtract (i.e., difference) distribution consisted of members 
with negative values.  This represents a serious problem with the COTS health physics 
instrumentation currently (and previously) supplied by major manufacturers, since all display a 
negative instrument reading as simple “0”.  An additional problem is that, at near background 
levels, the variance associated with the background subtracted readings will be essentially 
doubled over that of the gross (essentially) background measurement alone.  It was also seen, 
however, that for net count values substantially greater than just a relatively few counts, the 
background subtracted reading will possess just slightly greater variance than if left as a gross 
mode measurement.   

The gross mode of operation additionally allows the surveyor to actually observe the 
typically small range of background values in a given survey area.  The effective background 
sampling time then involves observations of the background readings over relative long periods, 
such as the length of time to conduct a survey of some laboratory room (presumably several 
minutes).  This isn’t possible in the background subtraction mode of operation where one and 
only one background value is incorporated into the instrument.  With some of the COTS health 
physics instrumentation, the exact value incorporated might not be known or readily available, at 
least in the same measurement unit as the displayed readings.   

CONCLUSION 

Certain health physics measurement applications involve the comparison of essentially 
two seemingly identical measurement results.  One example of this particular application studied 
here was the comparison of a morning’s scaler count of a reference source to an essentially 
identical count performed sometime previously that established the so-called reference reading.  
An additional example studied takes place within the so-called Albatross pulsed neutron 
remmeter, and involved the ‘running’ comparison of the Ag-wrapped neutron tube counts 



24 
 

relative to the Sn-wrapped gamma-compensation tube counts (both due to the same ambient 
gamma background).  In the examples above, each of the two measurement results was randomly 
distributed about the same Poisson mean count value.  The quantity of interest was the difference 
of the two results, which will be randomly distributed about the value of zero counts.   

A slightly different application involved the comparison of two slightly different 
measurement results.  The example of this particular measurement application studied here was 
the utilization of the automatic background subtraction feature within portable health physics 
instrumentation.  Each of the two measurement results (i.e., the initial background count and the 
subsequent sample count) was randomly distributed about its own (and different) Poisson mean 
count value.  The quantity of interest was the difference of the two results, which will be 
randomly distributed about the expected difference value, i.e., mean difference of counts.   

This paper presented the calculational methods for the determination of both of these so-
called difference distributions, i.e., both for the former case involving the same mean count and 
the latter involving different mean counts.  At the lower count realm, a Poisson difference 
distribution was determined to be applicable.  At the higher count realm, the normal difference 
distribution function was utilized.  Specific examples were provided which highlighted the 
various concepts and illustrated the calculational methods.   

With regard to the comparison of a daily source count to its previously-determined 
reference value, minimum counts for various scenarios were presented in order to reliably meet 
required tolerance limits of 10% and 20%.  In either case, it was found beneficial that the 
initial reference readings be established utilizing a counting interval of longer length than the 
daily interval.  With regard to the automatic background subtraction feature, it was noted that net 
count values near 0 counts would almost always have the negative values of the difference 
distribution truncated to 0 counts by COTS instrumentation, whereas significant net count values 
would be displayed correctly, but with a larger associated variance than the gross count itself.   

This paper therefore provides a technical basis for the necessary source strength of a 
check source in order to meet tolerance limits, the gamma field limitations of the HPI2080B 
Albatross, and the consequences of automatic background subtraction in COTS instrumentation.   
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Appendix A. Calculations of the normal difference distribution between two independent 
variates following the same or different distributions.   

The Normal Difference Distribution (Weisstein 2015) describes the distribution of a 
difference of two normally distributed variates X and Y with means and variances (x ,2

x) and 
(y , 2

y), respectively.  Its formula is given by eqn (A-1).   

𝑃𝑃𝑋𝑋−𝑌𝑌(𝑑𝑑) = 𝑒𝑒−[𝑑𝑑−�𝜇𝜇𝑥𝑥−𝜇𝜇𝑦𝑦�]2 [2�𝜎𝜎2𝑥𝑥+𝜎𝜎2𝑦𝑦�]�

�2𝜋𝜋(𝜎𝜎2𝑥𝑥+𝜎𝜎2𝑦𝑦)
       (A-1) 

where d is the difference value.   

First, for the case involving the comparison of two measurements of the same mean 
count, x = y and 2

x = 2
y  = 2, i.e., same mean count and same count times, eqn (A-1) reduces 

to the formula given by eqn (A-2a).   

𝑃𝑃𝑋𝑋−𝑌𝑌(𝑑𝑑) = 𝑒𝑒−𝑑𝑑
2 4𝜎𝜎2⁄

𝜎𝜎√4𝜋𝜋
         (A-2a) 

However, for x = y and 2
y = 0.1 ´ 2

x, i.e., same mean count but with a reference 

count time ten times longer than the daily count time, eqn (A-1) reduces to the formula given by 
eqn (A-2b).   

𝑃𝑃𝑋𝑋−𝑌𝑌(𝑑𝑑) = 𝑒𝑒−𝑑𝑑
2 2.2𝜎𝜎2𝑥𝑥�

𝜎𝜎𝑥𝑥√2.2𝜋𝜋
         (A-2b) 

Additionally, for x = y and 2
y = 0.2 ´ 2

x, i.e., same mean count but with a reference 

count time five times longer than the daily count time, eqn (A-1) reduces to the formula given by 
eqn (A-2c).   

𝑃𝑃𝑋𝑋−𝑌𝑌(𝑑𝑑) = 𝑒𝑒−𝑑𝑑
2 2.4𝜎𝜎2𝑥𝑥�

𝜎𝜎𝑥𝑥√2.4𝜋𝜋
         (A-2c) 

Note that the typical normal distribution is given by eqn (A-3),   

𝑃𝑃(𝑥𝑥) = 𝑒𝑒−(𝑥𝑥−𝜇𝜇)2 2𝜎𝜎2⁄

𝜎𝜎√2𝜋𝜋
         (A-3) 
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where x represents the possible values about the mean, .  For a mean equal to zero, i.e., µ = 0, 
and representing σ by instead the symbol ρ (the reason for which will soon become apparent), 
eqn (A-3) then reduces to the expression given by eqn (A-4):   

𝑃𝑃(𝑥𝑥) = 𝑒𝑒−𝑥𝑥
2 2𝜌𝜌2�

𝜌𝜌√2𝜋𝜋
         (A-4) 

Note now that with the substitutions ρ = σ√2, ρ = σ√1.1, and ρ = σ√1.2, an equation of 
the form of eqn (A-3) can then represent eqn (A-2a), eqn (A-2b), and eqn (A-2c), respectively.  
This then allows the use of the built-in Excel function NORM.DIST(x, mean, std-dev, 
cumulative), where the mean is 0, the std-dev is ρ, and cumulative is either TRUE (i.e., 1) for the 
cdf or FALSE (i.e., 0) for the pdf.  The differences are then determined by inspection of the 
resulting distribution.  However, the built-in Excel function NORM.INV(prob, mean, std-dev) 
allows the direct determination of the difference value that yields the required one-sided 
cumulative probability (i.e., via the ‘prob’ parameter).   

The equations above are directly applicable to alpha or neutron check source counts since 
the alpha or neutron background is essentially zero.  However, this is not true for beta or gamma 
check source counts since beta and gamma backgrounds can be significant and need to be 
accounted for.  Since a net count = the gross count – the background count, then the variance in 
the net, σ2

net, = σ2
gross + σ2

bkgd = gross count + background count = net count + 2 ´ background 

count = net count ´ (1 + 2 ´ background count/net count).  Hence, the standard deviation in the 

net count, σnet, is increased beyond the typical √(net count) as follows:   

𝜎𝜎𝑛𝑛𝑒𝑒𝑛𝑛 = √𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥 �1 +  2 𝑥𝑥 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑛𝑛𝑒𝑒𝑛𝑛

        (A-5) 

where ‘net’ is the net mean count, and ‘bkgd’ is the background mean count.   

Next, for the latter case involving the comparison of two slightly different mean counts, 
the value y can be seen as the background mean count and the quantity (x - y) as the net mean 
count, such that the value x is seen as the gross mean count.  Additionally, in this case, the 
variances are set equal to the applicable Poisson means.  Hence, eqn (A-1) can be readily 
transformed to the more easily readable:   

𝑃𝑃𝑏𝑏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑑𝑑) = 𝑃𝑃𝑛𝑛𝑒𝑒𝑛𝑛(𝑑𝑑) =  𝑒𝑒
−(𝑑𝑑−𝑛𝑛𝑛𝑛𝑛𝑛)2 (2(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+𝑏𝑏𝑏𝑏𝑔𝑔𝑑𝑑))�

�2𝜋𝜋(𝑏𝑏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)
    (A-6) 

where ‘bkgd’ is the background mean count, ‘net’ is the net mean count, and ‘gross’ is the gross 
mean count (i.e., equal to ‘bkgd’ + ‘net’).   
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Appendix B. Calculations of the Poisson difference distribution between two independent 
variates following the same Poisson distribution.   

Several Excel-based calculations were performed, which represented the Poisson 
difference distribution between two measurements with the same Poisson mean count.  The 
calculations were based on eqn (B-1) below.  The calculations initially investigated Poisson 
mean counts per interval ranging from a 0.5 mean count up to 8 mean counts per counting 
interval.  Some of the results were presented in the main text.  Both the Poisson-based 
probability mass function (pmf) distributions were calculated as well as the cumulative 
distribution functions (cdf) for differences ranging from -16 counts to +16 counts for Poisson 
mean counts ranging from 0.5 to 8 mean counts per interval.  As expected, all of the pmf 
distributions were both symmetric about zero and normalized.  The increased broadening with 
increased mean count was quite apparent.  It can be noted that the cdf’s were not symmetric 
about zero, as is the case for the mathematical normal distribution, i.e., exactly half of the normal 
distribution is less than or equal to zero and exactly half is greater than or equal to zero.  In the 
Poisson case, the same fraction of the distribution is less than zero as is greater than zero, but the 
largest probability for such a discrete distribution was for the difference of exactly zero.  
Therefore, exactly half of the distribution is not greater than or equal to zero, and that is reflected 
in the asymmetry of the cdf.   

It was surmised that all the pmf distributions could be collapsed into a common curve.  
Indeed, by rebinning both axis by a factor equal to the original Poisson distribution’s standard 
deviation, i.e., (mean count), the difference distribution plots were found to coincide.  It was 
also found that the width (or spread) of this difference distribution is greater than the original 
Poisson’s by a factor of 2, as expected from the standard paired-blank case within classical 
statistics (Currie 1968).   

As the calculations of the Poisson difference pmf distribution progressed, the expression 
of import evolved from eqn (B-1) to eqn (B-4) as presented below.  The initial expression of 
import was the following product:   

𝑃𝑃1(𝑛𝑛1, 𝜇𝜇) ∙ 𝑃𝑃2(𝑛𝑛2, 𝜇𝜇) = �𝜇𝜇
𝑛𝑛1

𝑛𝑛1!
∙ 𝑛𝑛−𝜇𝜇� ∙ �𝜇𝜇

𝑛𝑛2

𝑛𝑛2!
∙ 𝑛𝑛−𝜇𝜇� = 𝜇𝜇𝑛𝑛1+𝑛𝑛2∙𝑒𝑒−2𝜇𝜇

𝑛𝑛1!∙𝑛𝑛2!
   (B-1) 

where  is the (identical) Poisson mean count expected for each of the two counts, n1 are the 
possible integer count values possible from count #1, and n2 are the possible integer count values 
possible from count #2.  The probability of simultaneously observing a particular count n1 in 
count #1 and n2 in count #2 is simply P1 ´ P2.  By letting n2 – n1 = d, where d is the sought-after 

difference in the counts, the expression of import then became:   

𝑃𝑃(𝑛𝑛1,𝑑𝑑, 𝜇𝜇) = 𝜇𝜇2𝑛𝑛1+𝑑𝑑∙𝑒𝑒−2𝜇𝜇

𝑛𝑛1!∙(𝑛𝑛1+𝑏𝑏)!
        (B-2) 
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The expression in eqn (B-2) represents the probability for a difference d, given a Poisson 
mean count  and an observed count n1.  This expression was entered into Excel and summed 
over a reasonably large number of rows and columns representing the possible n1 values.  At the 
low values of Poisson mean count considered, n1 typically ranged from 0 to 40.  This sum, 
however, should actually take place over the range of possible n1 values from 0 to :   

𝑃𝑃(𝑑𝑑, 𝜇𝜇) = ∑ 𝜇𝜇2𝑛𝑛1+𝑑𝑑∙𝑒𝑒−2𝜇𝜇

𝑛𝑛1!∙(𝑛𝑛1+𝑏𝑏)!
∞
𝑛𝑛1=0         (B-3) 

This expression was recognized, however, by Irwin (1937) to be equivalent to:   

𝑃𝑃(𝑑𝑑, 𝜇𝜇) = 𝑛𝑛−2𝜇𝜇 ∙ 𝐼𝐼𝑏𝑏(2𝜇𝜇)        (B-4) 

where Id(2) is the modified Bessel function of the first kind of order d and argument (2).  Note 
that this function is given by:   

𝐼𝐼𝑏𝑏(𝑥𝑥) = ∑ 𝑥𝑥𝑑𝑑+2𝑏𝑏

𝑏𝑏!∙Γ(𝑏𝑏+𝑏𝑏+1)∙2𝑑𝑑+2𝑏𝑏
∞
𝑏𝑏=0 = ∑ (𝑥𝑥/2)𝑑𝑑+2𝑏𝑏

𝑏𝑏!∙(𝑏𝑏+𝑏𝑏)!
∞
𝑏𝑏=0  , for d  0   (B -5) 

The expression in eqn (B-4) represents the probability for a difference d simply given a 
Poisson mean count, .  This expression was entered into Excel, using the built-in functions EXP 
and BESSELI, as simply EXP(-2) ´ BESSELI(2,d).  This now allows the positive-sided 

Poisson difference pmf distributions to be readily determined, even for quite large values of the 
Poisson mean count , i.e., up to means of over 300 counts.  The numeric results from the use of 
eqn. B-4 were identical to those from the initial (quite rigorous) use of eqn B-1.  Note that I-d(x) 
= Id(x) = Iǀdǀ(x) readily allows the extension to d < 0.  Alternately, symmetry about zero can be 
used to populate the negative values of the difference distribution, if needed.   

Appendix C. Calculations of the Poisson difference distribution between two independent 
variates following different Poisson distributions.   

Several Excel-based calculations were performed, which represented the Poisson 
difference distribution between two measurements with different Poisson mean counts.  The 
calculations were initially based on eqn (C-1) below.  The Poisson-based probability mass 
function (pmf) distributions were calculated for differences ranging from -10 counts to +30 
counts for Poisson mean count differences ranging up to 10 counts.  The increased broadening 
with increased mean count was again apparent.  It should be noted that, with the exception of a 
difference of zero, the pmf distributions were not absolutely symmetric about the mean 
difference, although they were normalized.   

As the calculations of the Poisson difference pmf distribution progressed, the expression 
of import evolved from eqn (C-1) to eqn (C-4) as presented below.  The initial expression of 
import was the following product:   
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𝑃𝑃1(𝑛𝑛1, 𝜇𝜇1) ∙ 𝑃𝑃2(𝑛𝑛2, 𝜇𝜇2) = �𝜇𝜇1
𝑛𝑛1

𝑛𝑛1!
∙ 𝑛𝑛−𝜇𝜇1� ∙ �𝜇𝜇2

𝑛𝑛2

𝑛𝑛2!
∙ 𝑛𝑛−𝜇𝜇2� = 𝜇𝜇1𝑛𝑛1  ∙ 𝜇𝜇2𝑛𝑛2  ∙ 𝑒𝑒−(𝜇𝜇1+𝜇𝜇2)

𝑛𝑛1!   𝑛𝑛2!
 (C-1) 

where 1 and µ2 are Poisson mean counts expected for each of the two counts, n1 are the possible 
integer count values possible from count #1 of 1, and n2 are the possible integer count values 
possible from count #2 of µ2.  The probability of simultaneously observing a particular count n1 
in count #1 and n2 in count #2 is simply P1 ´ P2.  By letting n2 – n1 = d, where d is the sought-

after difference in the two counts, the expression of import then became:   

𝑃𝑃(𝑛𝑛1,𝑑𝑑, 𝜇𝜇1, 𝜇𝜇2) = 𝜇𝜇1𝑛𝑛1  ∙  𝜇𝜇2𝑛𝑛1+𝑑𝑑  ∙  𝑒𝑒−(𝜇𝜇1+𝜇𝜇2)

𝑛𝑛1!    (𝑛𝑛1+𝑏𝑏)!
      (C-2) 

The expression in eqn (C-2) represents the probability for a difference d, given Poisson 
mean counts of 1 and µ2 and an observed count n1.  This expression was entered into Excel and 
summed over a reasonably large number of rows representing the possible n1 values and columns 
representing n2 values.  For low values of Poisson mean counts, n1 typically ranged from 0 to 50.  
This sum, however, should actually take place over the range of possible n1 values from 0 to :   

𝑃𝑃(𝑑𝑑, 𝜇𝜇1, 𝜇𝜇2) = ∑ 𝜇𝜇1𝑛𝑛1   ∙  𝜇𝜇2𝑛𝑛1+𝑑𝑑  ∙  𝑒𝑒−(𝜇𝜇1+𝜇𝜇2)

𝑛𝑛1!    (𝑛𝑛1+𝑏𝑏)!
∞
𝑛𝑛1=0       (C-3a) 

                        = ∑ 𝜇𝜇2
𝑑𝑑
2   ∙  𝜇𝜇1

1
2(2𝑛𝑛1+𝑑𝑑)  ∙  𝜇𝜇2

1
2(2𝑛𝑛1+𝑑𝑑)  ∙  𝑒𝑒−(𝜇𝜇1+𝜇𝜇2)

 𝜇𝜇1
𝑑𝑑
2                                                        𝑛𝑛1!    (𝑛𝑛1+𝑏𝑏)!

∞
𝑛𝑛1=0     (C-3b) 

This expression can now be recognized to be equivalent to:   

𝑃𝑃(𝑑𝑑, 𝜇𝜇1, 𝜇𝜇2) = 𝑛𝑛−(𝜇𝜇1+𝜇𝜇2)  ∙  (𝜇𝜇2
𝜇𝜇1

)
𝑑𝑑
2  ∙  𝐼𝐼|𝑏𝑏|(2√𝜇𝜇1𝜇𝜇2) , for µ2 ≥ µ1   (C-4) 

where Id(x) is the modified Bessel function of the first kind of order d and argument (x), given 
previously in eqn (B-5), µ2 must be greater than or equal to µ1, and that I-d(x) = Id(x) = Iǀdǀ(x).  
This was first presented in problem #9 of section V of Feller (1966), but without the important 
condition that µ2 ≥ µ1.   

The expression in eqn (C-4) represents the probability for a difference d given the two 
Poisson mean counts.  This expression was entered into Excel, using the built-in functions EXP, 
SQRT, and BESSELI.  This now allows the Poisson difference pmf distribution to be readily 
determined, even for quite large values of Poisson mean count, i.e., up to means of over 300 
counts.  The numeric results from the use of eqn. C-4 were identical to those from the initial 
(quite rigorous) use of eqn C-1.  Note that unlike the case in Appendix B involving the same 
Poisson mean, perfect symmetry does not occur about the expected difference value, although 
they were normalized.  Note also that when µ2 = µ1 = µ, eqn (C-4) reduces to eqn (B-4).   
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